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The transient radiation or diffraction from a planar source imbedded in an infinite baffle is

analyzed for three different baffle conditions (rigid, free-space, and soft). For an excitation

and spac own that the field is related to the normal derivative of the input
y. A method is also given for computing the transient fields based on a wave
decomposmon in the spatial frequency domain. This method is a time generalization of the
angular spectrum theory that presents transient wave propagation as a time-varying spatial filter,
allowing a linear systems interpretation of the diffraction. The formalism is shown to easiiy
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arbitrary distances to the observation point and uses cnmnntatmnallv efficient FFT calculations.

PACS numbers: 43.20.Px, 43.40.At

Due to their limited sizes, transducers and arrays do not

launch plane waves but radiate more complicated waves in

accordance with diffraction phenomena. New applications
of ultrasound tend to use pulsed sound more frequently than
continuous radiation. Several other authors have done anal-
yses of the diffraction of pulsed waves,'™!? restricting their
work to sources in a rigid surrounding baffle with a time-
separable excitation function.

Tha na: an
This paper addresses the problem of the effects of

boundary condition assumptions on the radiated field of
transducers excited with a variable spatial excitation but a
uniform time excitation (i.e., the excitation signal is separa-
ble in space and time). The transducers are planar and are
embedded in baffles that specify one of three boundary con-
ditions on the field. The boundary conditions considered in-

chisda. Fraa gmnna o riaid haffla and a ragiliant hafRa A than
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method is also presented for computing the
time-domain impulse response and the response to an arbi-
trary temporal excitation in a computationally efficient
form. The method is an extension of the classic angular spec-
trum theory. It gives a linear systems interpretation of the
diffraction effects and shows how the wave propagation of
an ilup'ulSi'v'el'y' excited source can be modeled as a time-vars y-
ing spatial filter that reduces the high spatial frequency con-
tent of the angular spectrum. Inversion into the space do-
main gives the time domain impulse response for a source
with an arbitrary velocity distribution or transducer geome-
try. The transient response for an arbitrary time excitation is
then obtained by a convolutlon The use of the Founer for-

retical
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omam Numerlcal snmulatlons are shown and a
closed form solution for an important class of velocity distri-
butions is also obtained (in the Appendix).
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i. BASIC THEORY
It is known from diffraction theory that the diffracted
or radiated field, ¢ (x, .t ), can be wntten as

(1)

"o

& (x.y.z,t)

'h—-“

= [(#or 2

where ¢(x,»,0,¢) is the ﬁeld on the mput plane {located at
z = 0), * indicates the convolution operation upon the indi-
cated variable, n is the normal to the surface S, and g(x,y,z,7)
is the Green’s function that solves the homogeneous wave
equation as well as the assumed boundary conditions. In
acoustics the quantity ¢ can represent the velocity potential,

Lo o sralanldey Amcmnsnnes A a tH
the z velocity component, or the pressure. In the following, ¢

will be interpreted as the velocity potential.

The problem of finding the Green s function is solved
by analyzing the reflected field of a point source over an
infinite baffle. This approach is similar to Sommerfeld’s
ideas' for the impulse regime. For the three cases, the
Green’s function can always be written as a combination of

S TIPS SIS, PRy P urly S-S P /,.\ D

tne wave equation €iemeniary solution, & {t+R/c)/R

1. CASE 1: FREE SPACE

When the baffle matches the properties of the propaga-
tion medium, the fields are continuous across the boundary
and there is no reflection at the boundary interface. There-
fore, the best-suited Green’s function is the outgoing elemen-

tary solution, & ( — R /c)/R. Thus,
O (8t—R/\_s9(1)_ & IR 2)
am\ R )/ an\R) R on’ N

where &' indicates the partial derivative of the Dirac delta
function with respect to time. Substituting in Eq. (1) gives

& (x.p.2,t)

=J[(}o_a_(l) _ 1L JR 8450 _ 194 ds, (3)
sl dn\R ¢R dn ot R on
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where @, is the value of the function or the indicated deriva-
tive evaluated with at a retarded time, ¢t — R /c. Here, we

have R = [(x — xo’ + (¥ —»o)* + 2 — Zo)'l with (x,y,z; be-
dm e dhan bt e ~lcnen bl sencitinee asd Y hatno o
ing ui€ aroirary Ooservation posiiion ana ‘Ao,)lo,éoj OCINE a
point on the source plane. We will assume z, = 0. Equation

|
(3) is the Kirchhoff formula for unsteady phenomena. We

— == . (4)
2 R 4)
a1\ a f1\dR L
®)"&R\% . )
Ot/ ORAR/O0Z
_z—2z,
- p3 " (6)
in
For an aperture on the plane z, =0,
& (x.p.2,t)

_([2fo, 2z (9b6\_ 1(38\| a ()

“HR TR o) T R oz oo™
For the sake of simplicity, the x,,y,,Z, argument has been
suppressed. To remove the retardation terms, we can write
the iast equation in the form of a convolution,

dlxyzt)= ( 8¢0** —l-nﬁ,\##—-z——
dz xy R “x v
a¢oA... \$5{t_ 5\ (8)
ot xy cR2}r \ ¢/

Considering Eq. (8), it is clear that the radiated potential is

related to the z velocity, the pressure (i.e., the time derivative

of the potential), and its own value on the emitting surface.

Usually the second term of the expression is dropped be-

cause of the 1/R * dependence, making the expression depen-
N 3

Aant Aanly A~ ha valanityy and tha mracenira Fo

+h
GeIit Oy Omn Ui veioCily ana th Pr e case of

CSSUre. rOr ui€ Casc O1

monochromatic

c waves, it is easy to justify this approxima-
tion and to find the bounds for propagation. For this case, at
distances such that kAR>» 1 (where k is the wavenumber), the
approximation is justified. However, in the transient wave
case, the assumption does not hold any longer and the poten-

tial term should be retained.

Polx.,0,t ) = ot Js(x.p). (%)
This relation means that the surface points can vibrate with
different amplitudes but with the same temporal depen-
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be perpendicul
This type of propagation causes a ¢ — z/c¢ dependence in the

expressions on the surface, consequently relating derivatives
by

- ——= (10)
Using the relation of Eq. (10), we can relate the potential at
the input plane to the velocity in that plane (since velocity
information is frequently the known or assumed quantity at
the input). For a velocity given by

0, (x,0,0,) = vt Js(x.p), (11)
the potential is given by
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%o _, (13)
z
dz
1 ZTo
=—2, (14)
c Jdt
For an impulse time excitation, we have v{t) =4 (¢), and it
follows that
Bolxp.0,t) = cH (t)six), (15)
where H (¢ ) is the Heaviside step function. From Eqg. {8) we
obtain the time-domain impulse response, £2 (x,y,z,t ), as
e Wi
Dixyzt)
5(t R/c( \ cth—R/c1
sl es [BRAYy | 2)  cHU— R/
xy / R }
11£\
(1Y)
The potentlal for an arbitrary time excitation of velocity v(¢)
is obtained from the resuits of Eq. (16) as a convolution of v(z )
with the time domain impulse response,
¢ (xyzt) =vlt) #2(x.p2.t ) (17)
For both cases of '"*s. (16) and (17), the potential is related
only to the vertical surface velocity. Once this velocity distri-
bution is known, it is then possible to compute the entire

lil. CASE 2: PERFECTLY RIGID BOUNDARIES

For a rigid baffle the normal velocity (i.e., the normal
derivative of the acoustic potential) must go to zero on the
boundary. For this case the Green’s function is divided into
two waves: one impinging on the rigid baffie and the other is

el i ot La. 1 L. PPN SR - S-Sy
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Green’s function is given by
5t — 17 + (2 — 21/ %/c]
—_ — 4o
glx.yzt)= —

S{t— [P +(z +zo)‘]”‘/c]

(18)
[rl + (z +z )l]lll

For z, = 0, it follows that

8lxy.z,t) =[26(t — R /c))/R ; (19)
and

oglx.yzt) . .

—= - =0. (20)

dz

The derivative disappears on the rigid baffle as expected. The
time-domain impulse response becomes

2 (x.p,z,t) = 2s(x,y)* *[8(t — R /c)/R ]. (21)

IV. CASE 3: PERFECTLY RESILIENT BOUNDARY

For a resilient hgnndnrv the aoenctlr‘ notential must be

zero on the boundary. The same approach is used as in the
rigid case except that the reflection coefficient is set — 1,
giving a Green’s function of
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glx 8{t — [P + (z = z,)*/¢]'"?}
PZt) = ["2+(Z_20)2/c]1/2
Pt gy
i\ +iz+207¢c)"
At z, =0, we obtain
glxyz,t)=0 3

and _
_ 28t —R /c) | 28'(t — R /c)\ .
an =A\Tr T & ) '
The time-domain impulse response for this case is
2 (xyzt)

stegy)e (22— ). e
= SIX,),)* * .
J xy ( )
V. FIELD CALCULATIONS: COMPUTATIONAL
TECHNIQUE

Equations (16), (21), and (25) are not easily computed
directly. For the sake of computational efficiency, it is better
to work in the spatial spectrum domain, (f,, f;), where f,
and f, are the spatial frequencies. To do this, we decompose
the elementary solution using properties of the Dirac delta
function. It should be noted that the elementary solution is a
radial function. One Dirac delta function property is that,

X WAL 6
8Lf(r)] .2, - (26)
wherer; are the N zeros of f(r). After c_i_ opping the physically

unrealizable term we have
Slct —R)

R

il

5[’._ (Cztz _22)1/2]/'

Taking a two-dimensional spatial transform (that then re-
duces to a Hankel transform due to radial symmetry), we
have

B[8(ct —R)/R)=Jylp(c*t* —22)|H(t —z/c), (28)
where J, is zero-order Bessel function and p = (2 + f2)"/%.
Also,

B (6(ct —R 2)H (¢t — z/c)

R? ct |

After substitution, the transform of the time-domain im-

pulse response, 7] (fx» [, 2.t), for the three cases under study
can be written as

) - eloe— (29)

Free space
0 (fes £552:t)

=5t f)|(1+2 AV P O

T [ AlA2¢ 2_‘ \1/21}1&;2“,:\1
—|—CH(I)* OlP\ 212 Jj£4 Il. (30)

Rigid baffle
Q.. f,21)

= 2(f,, f,) Jol plc’t? — 22 1H (t — z/c). (31)
Resilient baffle
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0 £ zt)
Y xITyr g
_ V4 t—2z
= 25, £,)| 2ol pler? — 221 H (1=E)
LC: \ c V4
- l’-l,=2‘2_,_2\1/21nl PRYIAN |
+eH(r)» =0 ——— =2 (32)
[ S J

The formulation of the last three equations is the angular
spectrum theory expressed including the temporal domain.
The equations link the spectrum of the radiated field to the
surface information by means of a transfer function. The
transfer function, Jo[ p(c?t 2 — z%)'/?), is a time-varying one.
IInlike the monochromatic case, the transfer function acts

S IGAT U HRUNLROUCIIIULEA LT ST, A0 L2820l AR AV &%

on both the magnitude and phase of the input angular spec-
trum. As time increases the J, function decreases, thereby
enhancing the lower spatial frequencies. In the field space
domain the field will become smoother as time advances due
to this hltermg eﬂect

A 1‘1\ nemsea
aia (o< repre-

weichted

4 , ] erm, Weipiaiie

nte an avaraaging nf
SCIS an averaging Gi ¢

by the 1/(ct)? expressmn Such a convolution enhances the

lower spatial spectrum components of the angular spectrum.
Since Jo[ p(c*t 2 — 22)"/?]< 1, the maximum effect of the

convolution term can be estimated. Computation leads to

2l plc?t® — 22)”,27]

..
'5"

o

o~
l-—| ﬁ'-'

Py 2 g Py
(& ¥ 12

_ct—z
= .

o
—~—

-
L 3
4

Rapanca tima mug
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have ct>z. Writin
comes

The latter relation shows that the convolution will be of less
influence as the distance z increases.

to a convolution for the free spac and resilient baffle cases.

At time, ¢ = z/c, the Bessel function will be equal to
unity and the convolution vanishes. Consequently, at that
point in time the field is an exact image of the source. At the
same time ail of the coefficienis are equai and the caicuiated
field has the same value for all three cases. This is physically
seen by arguing that this field is only the waves transmitted
directly from the source; the boundary influence has not
been felt yet. For all cases a common feature is that the influ-
ence of the boundary condition decreases as z increases. A

It is interesting to note that the fields associated with a
free space or resilient 'boundary can be written in terms of the
field obtained for the the rigid baffle, ung,d {(x5,2,t ). The free-
space solution is

ﬁfree space(,;’.f;r’z’t)
- nnd(f;’f:nz’t)/l_{_i\
2 ct}
z-r'.gid U;’.-y’zft) .

The solution for the resilient boundary can be written as

©
[=]
(7]
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ﬁr&ilient(ﬂc’f:v 9z’t) = (Z/Ct )'ﬁrigid(f;’f;’z’t)
) Zﬁrigid(f; s Syt )

2,2

The inverse spatial transform of Egs. (35) and (36) provide
the fields in space. It should be noted that multiplicative
terms (i.e., the directionality factors) are functions of time
and have the same effect in both the space and the spatial

frequency domains.

The spatial spectrum form of the solutions of Eqgs. {35)

and (36) are important because a closed-form so]utlon for
ﬁdg@ (fx f, 2t ) can be found for an important class of veloc-
ity distributions. This solution is found in the Appendix.

_ For axisymmetric transducers, the value of
82,4l f,-2,t ) along the propagation axis (r = 0} is given by

Bogal0t) = [ SpV Il ol =21 lpdp (3)
0
= s[(c%? — 22)'?]. (38)

The field along the propagation axis is the exact image of the
velocity distribution along a radial line.

VI. NUMERICAL SIMULATIONS

Using the spatial FFT operations produces a computa-
tion that is efficient, rapidly convergent, and independent of

camnli Anctrainte in tha ti A 1 1
sampling constraints in the time domain. The computational

procedure to obtain the time domain impulse response field
is

(a) computation of the source angular distribution,

(b) multlphcatlon by the spatial domain diffraction fil-
ter, Jol pic?t? — 2%)'/?], to obtain 2,4 (s, f,.2,¢) as in Eq.
(31), _

{c)in n of .Q

i¢ mnversion of rigid (If:t ’Jf; sZs
(d) storage of 2,5iq (x.,2,1 ),
(e) multiplication by the correct directionality factor
and convolution to obtain either 2g.. space(X.52,f) OF
02, csitien (X,952,¢ ) (since the directivity factors are the same in
the space domain).
For an arbitrary source distribution, the computation
of the impulse response, 2.....(x,v,2,1 ), for 64 X 64 X 50 data

VR VIS LIPRRISC ITOPULION, Sohgid Yy vt )y AU 7NV Lal

points takes 24 s on an IBM 3033 mainframe computer.
Once the impulse response is known, computation the field
for a free-space boundary or a resilient boundary for arbi-
trary time excitation requires a bit more than one second of
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FIG. 2. Radiation patterns from a uniform circular piston imbedded in free
cr/A=0; ----r/4 =025

------ r/A = 0.57.

space conditions [z=1cm, 4 =4 cm).

computation time. For radially symmetric fields, the two-
dimensional FFTs can be replaced by a one-dimensional
Hankel transform that is comnutationally faster.!

22allRC1 LLQllS100152 LG 35 LU PRALRRAVALR2E) 283382,

Figures 1-3 show the effect of the boundary condition
on the velocity potential and its time derivative (i.e., the pres-
sure) radiated by a uniformly excited circular piston. In all of
the figures, the time axis begins at the arrival time of the first
wave (i.e., at £ = z/c) and is normalized by the transducer
diameter, 4 = 4 cm). The sound velocity is assumed to be
1500 m/s. The dotted, dashed, and dot—dash lines represent
the fields observed at z = 0.54 with the distance ratios of 7/
A =0, 0.25, and 0.57, respectively. The vertical arrows cor-
respond to the derivative taken in the distributional sense
with the length being proportional to the size of the discon-
tinuity.

Figure 1 shows the field of a transducer in a rigid baffle.
The results for this problem are known and cited in the liter-
ature.’>'%12 The pressure on axis is reduced to two Dirac
functions with opposite signs.

In the free-space case (Fig. 2), the convolution term
compensates exactly for the decrease due to the directivity
factor. The domains where the field was constant in the rigid
case remain constant for the free space case as can be shown
by the following reasoning. The convolution applied on a

region of constant value will be
2 1 .. ot

-—Z PRy
- — df = —. (39)
C Jz/c é' 2 ct
It follows immediately that
14z/ct+(ct—2z)/ct=12 {40)

2 2
- -1
=
Ewn w
2° °
= T T —— 8 |
O |f %g \
-] R B —. . .
< g | i
(&) ::' H
32- ol \
(W : f
>
e o ;
"te os 1.0 s 2.8 ' oaoi 0.5 1o s 2.0
TIME (CxT/A) POIME o1

FIG. 3. Radiation patterns from a uniform circular piston imbedded in a
resilientbaffle(z=1cm, 4 =4cm).-- - -#/4=0;---- r/A=0.25;------
r/4 =0.57.
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giving a consiant fieid for these regions. For regions of non-
constant value the potential and, consequently, the pressure
undergo drastic changes. The jump discontinuity of the dot-
ted curve (i.e., on axis) in Fig. 2 (just to the right of the 0.5 axis
value) is smaller than that of Fig. 1. Off axis the slope at the
other two curves of Fig. 2 is less than that of Fig. 1, thus
implying a reduced pressure.

For the resilient or soft boundary case (blg 3), the pre-

PREPIGHS PR PIOS. JRSU. N

2o - S IR PPy
VlUub caicuialoll BIVCD I.IIC lUllUWlllg vcuuc lll UIC nglUllb I
constant value,

2z/ct + [2(ct — 2)]/ct = 2. (41)

For the nonconstant domains, the distortion is greater than

un: erC'bpdbC case. Due to I.HC LZ/(J Ull’CLllVlly ldbtof lIlC

honndaru “1“ 1an0e ic aven aoraator
vvunualy 1 1Qencee 1s even pivava.

The plots following Fig. 3 have been done on a 64 X 64
sample array. The amplitudes have been normalized to uni-
ty.

Figures 4-6 are the impulse response, observed atz = 1
cm, for a uniformly excited square transducer that is 2.8 cm
on a side. The field is taken along a median axis. Due to the
convolution, waves can exist in a region where they do not
appear in the rigid baffle case. The enhancement of low fre-
quencies induced by the convolution explains the smooth
aspect of the field between the edge waves. The potential in
these domains will introduce a strong radial velocity gradi-
ent responsible for the spreading of the wave. The pressure,

being the time derivative of the potential, will vanish in this
resluﬁ

For the nnr\nmd cases, as time increases further, the

als Lasls, as 18193 §r: A ot}

amplitude of the snatlal spectrum will become smaller be-
cause of the time-dependent multiplicative factors. A com-
mon feature of the nonrigid boundaries is to smooth the field
by enhancing the low spatial frequencies.

In Fig. 7, the field generated by the same transducer is
analyzed at a distance of z = 3 cm. For the sake of simplicity,

IWW\
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B &

~r,f‘%)/// / 0 18t

Lo Rﬁm

FIG. 4. Radiation pattern from a uniform square transducer imbedded in a
rigid baffle z = 1 cm, 4 = 2.8 cm).

911 J. Acoust. Soc. Am.,, Vol. 77, No. 3, March 1985

1.0

)
ey

0.8
3

NELOT!

Q.2
s

0.4
=
\%
\§

Ty POTENTIAL
BAB
——
\

\\

=

0.0

0%,
‘%’UMW////W e

Tht /
l-ﬁ alﬁrﬂ"&i

‘Ch
Ry O “ab
Il.0 RHUII'

l
:R
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only the resilient boundary solution is shown. The influence
of the convolution term is less than it was near the trans-
ducer but it siill is non-negligibie.
In Fia R tha nattarn ic chnwn at a dictan~ra nfom fram
411 1 15- U IS Patl\;lll 10 J1IIVVYWIL AL 4 UIOoWUIIVA UL J will IVl
a circular transducer (diam = 4 = 2.8 cm) with a Bessel ve-
locity excitation given by

sir) =J,[2(3.83r/4)], r<d. . (42)

e e I tha G

Th:c oo ade
111iS CAl.«ll.auUll LUIL lcapuuuo 1o the fir

af o fra.
10G¢€ Of 4 i1ec \Ax Cu-

lar membrane. The perfect similarity bet ween the source dis-
tribution and the field along the propagation axis is clearly
observed.

Figure 9 gives the impulse response field for the same
circular transducer with a Gaussian spatial velocity distribu-
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resilient baffle (z =3 cm, 4 = 2.8 cm).
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FIG. 7. Radiation pattern from a uniform square transducer imbedded ina
resilient baffie (z = 3 cm, 4 = 2.8 cm).

tion. The 1/ point of the spatial excitation is at 2.8/(3)'/? cm
from the center. Because of the low spatial frequency content

of the waveshape, the effect of diffraction on the beamshape
is small.

Vil. ARBITRARY TIME EXCITATION

For a nonimpulse time excitation, the diffracted wave is
a convolution between the impulse response and the time-
varying excitation function. Figure 10 represents the transi-
tion taking place in the establishment of a monochromatic
wave for a circular

wave for a circular pmfnn transducer. The calculations are

5LV LIQLSUULLL. A L0 Labiguiviis al

for z = 3 cm. The excitation signal is a sinewave starting at
t = 0. There are two complete cycles during the time span
shown. In the plot, the modulus of the potential is shown in
order to avoid obscuring the negative features of the poten-

/A
SN
<

0.0
3

FIG. 8. Radiation from a circular transducer having a Bessel aperture func-
tion of the form, s{r) = J(7.66r/A)(z=3 cm, A = 2.8 cm).
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FIG. 9. Radiation from a circular transducer having a Gaussian aperture
function [1/e point is 4 /(3)"/? from the axis], (z = 3 cm, A = 2.8 cm).

tial. The generation of secondary lobes is clearly visible. The
monochromatic behavior starts at the center and spreads out
along a ray generating the secondary lobes.

VIil. FINITE RECEIVER EFFECTS

A receiver with a finite aperture will perturb the ob-
served field by averaging the wave across the aperture. The
spatial frequency domain is well-suited to include this effect
as the receiver contributes a low-pass filter in this domain
that just multiplies the diffraction spatial filter. The aver-

aged field can be written as

{dixvzt))
N TRy sest 7

= | ¢ (x — x;, ¥y —yi,zt )R (x;, y;)dx; dy;, (43)
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FIG. 10. Transition into a monochromatic wave (z= 3 cm, A = 2.8 cm).
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where R (x;, ;) is the aperture function over the surface S.
The spatial convolution becomes a product in the spatial

Lo e nan ey A 2 TT o o 4y A dleen b oA nae Bioan bt e
1ecquonly aovinalii. ric 1C€ 1€ CucCuive wransSaucer runcrion
opagation and reception will be R{f,f))

In Figs. ll and 12 the source is a uniformly vibrating
square and the receiver is a circular transducer of radius
a = 2mm and ¢ = 5 mm, respectively. The smoothing intro-
duced by the averaging process is evident in both piots.
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FIG. 12. Impulse response of a square transducer (z =3 cm, 4 = 2.8 cm)
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baffle. The influence of a term that is frequently dropped,
[i-e., the second term on the right side of Eq (8)], has been

awimarize affanda At era

emphasized and the maximum effects of the convolution
n Eq. (34).

A Fourier space approach has been developed leading
to a time-varying filter interpretation of the wave propaga-
tion. The main features of this filter is to enhance the lower
spatial frequencies as time progresses by reducing the contri-
butions of the higher spatial frequencies. Hence, the propa-
gation process can be modeled as a low-pass filter having a
“bandwidth” that decreases as time progresses. The method
does not require any sampling constraints allowing any sam-
pling required by the user. The method provides the tempo-
ral impulse response and through convolution, the response

to a general time excitation.
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APPENDIX ‘

The spatial frequency formulation allows us to find a
closed-form solution for an important set of velocity distri-
butions. Each element of this set is written as

A(a* — A

s(r) = [ ( %

o, r>a,

r<a (A1)

where y is restricted to real values greater than — 1. The
case of u = 0 is a uniform piston transducer; y2 = 1 is a sim-
ply supported transducer, and =2 is a damped trans-

Auicar Thic cat afaveoitatinng ranracantc a w

Qucer. 11118 s€t O1 CXCitations représénis a class of veloc-

G¢E Ciass O vei0C-

given by'¢

Sp)=2T(p+ la**'[J, .\ (pa)/p**'], (A2)
where I"{x) is the gamma function. Substituting this expres-
sion into Eq. (31) and taking the inverse transform gives

2galrz,t)
(“J s 1(P9)
=27 (p+ N+ U
Jo pFTE
XJol pict? — 222 1J prip dp. (A3)

The latter integral is evaluated with the Sonine-Dougall for-
mula

CJ (@t BV (e

c&——.'

ety
a“’]"(a)-g“l""’-i—i/Z‘"(i/Z)
A .
X | (@®>—=B%—y*+ 2By cos 7)) ¢~ 'sin®* p dy,

(A4)
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Th solution to Eq (A
y , the solution iny Oi'v

C
farm
form of Legendre functions, hence they

this paper, since we seck only solutions that a:
mented on a computer. For integer values of _u, the integral
evaluations have simpler form

3
2}
D -
-
3
D
2
=E
=
=
w3
o =
o+
[v2
(4]
«
-
o b
[¢]
(=1
5

PR o a0 I \ Cxon
{2 (r,z,t)=;)0 k;-}-COS?] an (AY)
o* B U\ ANk r B
== b)(—:) Iﬂ cos* dn (A10)
Tk=0NMYY\NT/ JO
S BN IAY N\
()Y [

k) 7 Ap—zk—lA
BN )
Z\2k + 1IN , 8 Tan

{All)

where
T, =p/2, . (A12)

f ,

—ps2—1, "HEER (A13)

and
ro=Int[ p/2), .. .. (A14)
! SO S u odd, e
7, = Int[ u/2], #o (A15)

where Int[ ] is the operator that returns the integer part of

the argument. The notation in Eq. (A11)is

(M= &

. (A16)
\k/ klip—k)! N

It follows from a few manipulations that, (1) for < a (i.e., inside the disk boundary)

s o\2k/\g ] 2\k )

D(rzt)=

for [22 + (a —
\0, for ct>[22+ (@ + 1'%

(2) for r> a (i.e., outside the boundary of the disk)
r0 for z<ct<[2 + (a —r/]"?,
S p\ AN a

Ao

CD2(rzt) = l

0, for ct>[22+ (a+r?]V>

* a?#[éo gk)(%)ﬂ TR+ g(zlfir 1

N1 2<ct< [+ @+

(#VAY‘_M 1 (Zk\ for z<ct<[2*+ (a — 1'%

The integrals in Eq. (A11) are known.!” Using the notation
A
E,4)= [ cos* 7 dp (A17)
Jo
_ 1 {2k 1 *SY(2k\sin(2k — 21)4
- 22k(\k )A 92k —1 ‘S;"o(\i ) k—21
(A18)
A - " . s s =
Ey..4 )EI cos***t'ndy (A19)
(Zk + l\sm(2k —21+ 14 (A20)
A pu—2k—1
A B, (a2l

r)2] 1/2,

o oA\ N
Euid)+ 3 \2k+1)ka}

for [22+(a — 11" <ct <[ + (a + )12,

Ey .4 JJ’

It can be shown that for 4 = 0, the preceding reduces to the known solution for a circular piston transducer. The results

mentioned earlier apply to a certain class of velocity distributions. It should be noted that all combinations within the
described set of velocity distributions will have a closed form solution, thereby increasing the range of possible distributions.
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